Search results for "multiple objective programming"
showing 9 items of 9 documents
Agent assisted interactive algorithm for computationally demanding multiobjective optimization problems
2015
Abstract We generalize the applicability of interactive methods for solving computationally demanding, that is, time-consuming, multiobjective optimization problems. For this purpose we propose a new agent assisted interactive algorithm. It employs a computationally inexpensive surrogate problem and four different agents that intelligently update the surrogate based on the preferences specified by a decision maker. In this way, we decrease the waiting times imposed on the decision maker during the interactive solution process and at the same time decrease the amount of preference information expected from the decision maker. The agent assisted algorithm is not specific to any interactive me…
Experiments with classification-based scalarizing functions in interactive multiobjective optimization
2006
In multiobjective optimization methods, the multiple conflicting objectives are typically converted into a single objective optimization problem with the help of scalarizing functions and such functions may be constructed in many ways. We compare both theoretically and numerically the performance of three classification-based scalarizing functions and pay attention to how well they obey the classification information. In particular, we devote special interest to the differences the scalarizing functions have in the computational cost of guaranteeing Pareto optimality. It turns out that scalarizing functions with or without so-called augmentation terms have significant differences in this re…
Applying the approximation method PAINT and the interactive method NIMBUS to the multiobjective optimization of operating a wastewater treatment plant
2014
Using an interactive multiobjective optimization method called NIMBUS and an approximation method called PAINT, preferable solutions to a five-objective problem of operating a wastewater treatment plant are found. The decision maker giving preference information is an expert in wastewater treatment plant design at the engineering company Pöyry Finland Ltd. The wastewater treatment problem is computationally expensive and requires running a simulator to evaluate the values of the objective functions. This often leads to problems with interactive methods as the decision maker may get frustrated while waiting for new solutions to be computed. Thus, a newly developed PAINT method is used to spe…
E-NAUTILUS: A decision support system for complex multiobjective optimization problems based on the NAUTILUS method
2015
Interactive multiobjective optimization methods cannot necessarily be easily used when (industrial) multiobjective optimization problems are involved. There are at least two important factors to be considered with any interactive method: computationally expensive functions and aspects of human behavior. In this paper, we propose a method based on the existing NAUTILUS method and call it the Enhanced NAUTILUS (E-NAUTILUS) method. This method borrows the motivation of NAUTILUS along with the human aspects related to avoiding trading-off and anchoring bias and extends its applicability for computationally expensive multiobjective optimization problems. In the E-NAUTILUS method, a set of Pareto…
Designing empirical experiments to compare interactive multiobjective optimization methods
2022
Interactive multiobjective optimization methods operate iteratively so that a decision maker directs the solution process by providing preference information, and only solutions of interest are generated. These methods limit the amount of information considered in each iteration and support the decision maker in learning about the trade-offs. Many interactive methods have been developed, and they differ in technical aspects and the type of preference information used. Finding the most appropriate method for a problem to be solved is challenging, and supporting the selection is crucial. Published research lacks information on the conducted experiments’ specifics (e.g. questions asked), makin…
Interactive multiobjective optimization with NIMBUS for decision making under uncertainty
2013
We propose an interactive method for decision making under uncertainty, where uncertainty is related to the lack of understanding about consequences of actions. Such situations are typical, for example, in design problems, where a decision maker has to make a decision about a design at a certain moment of time even though the actual consequences of this decision can be possibly seen only many years later. To overcome the difficulty of predicting future events when no probabilities of events are available, our method utilizes groupings of objectives or scenarios to capture different types of future events. Each scenario is modeled as a multiobjective optimization problem to represent differe…
Implementation aspects of interactive multiobjective optimization for modeling environments: The case of GAMS-NIMBUS
2014
Abstract. Interactive multiobjective optimization methods have provided promising results in the literature but still their implementations are rare. Here we introduce a core structure of interactive methods to enable their convenient implementation. We also demonstrate how this core structure can be applied when implementing an interactive method using a modeling environment. Many modeling environments contain tools for single objective optimization but not for interactive multiobjective optimization. Furthermore, as a concrete example, we present GAMS-NIMBUS Tool which is an implementation of the classification-based NIMBUS method for the GAMS modeling environment. So far, interactive met…
Interactive Nonconvex Pareto Navigator for Multiobjective Optimization
2019
Abstract We introduce a new interactive multiobjective optimization method operating in the objective space called Nonconvex Pareto Navigator . It extends the Pareto Navigator method for nonconvex problems. An approximation of the Pareto optimal front in the objective space is first generated with the PAINT method using a relatively small set of Pareto optimal outcomes that is assumed to be given or computed prior to the interaction with the decision maker. The decision maker can then navigate on the approximation and direct the search for interesting regions in the objective space. In this way, the decision maker can conveniently learn about the interdependencies between the conflicting ob…
Agent assisted interactive algorithm for computationally demanding multiobjective optimization problems
2015
We generalize the applicability of interactive methods for solving computationally demanding, that is, time-consuming, multiobjective optimization problems. For this purpose we propose a new agent assisted interactive algorithm. It employs a computationally inexpensive surrogate problem and four different agents that intelligently update the surrogate based on the preferences specified by a decision maker. In this way, we decrease the waiting times imposed on the decision maker during the interactive solution process and at the same time decrease the amount of preference information expected from the decision maker. The agent assisted algorithm is not specific to any interactive method or s…